A strong ordering data type is based on a strong ordering relation P: for any $a,b,c \in A$,

- 1. P(a,a)=0,
- 2. $P(a,b)\lor P(b,a)$, and
- 3. $P(a,b)&P(b,c) \Rightarrow P(a,c)$.

The difference between strong ordering and weak ordering can be illustrated with two relations: " \geq " and ">". For instance, a \geq a is true, but a>a is false, and P(a,a)=0. It is proved in [Pfanzagl, 1971] that for strong and weak ordering data types <A;P>, A can be coded by numbers with preservation of properties 1-3 if A is countable.