Definitions.

The concept of empirical axiomatic theory is a formal representation of the "empirical content of data". This concept originates from the logic of empirical theories [Pzelecki, 1969; Samokhvalov, 1973; Zagoruiko, Samokhvalov, et al, 1978] and from the critical analysis of representative measurement theory [Krantz et al, 1971, 1989, 1990].

Definition. Empirical axiomatic theory is a set M of four components:

$$M = \langle Obs^V, V, W, S \rangle$$
, where

Obs^V is a measurement procedure,

 $V = \{P_1,...,P_{n1}\}$ is a set of empirical predicates (we assume that the equality "=" belongs to V),

 $W = \{Q_1, ..., Q_{n2}\} \ \text{is a set of theoretical predicates, where the predicates from } W \ \text{are idealizations of the empirical predicates from } V, \ \text{and}$

S - is a set of axioms in the $V \cup W$.

The set of axioms S consists of axioms S^V , S^W for V and W and for mapping rules $S^{V \cup W}$. These rules may be derived from the domain knowledge of measurement procedure Obs^V and predicates from V. If there is no mapping rule between V and W, then actually there is theoretical knowledge and sets W, $S^W \cup S^{V \cup W}$ are empty. In this case, empirical axiomatic theory M consists of only three components:

$$M = \langle Obs^V, V, S^V \rangle$$
.

Measurement procedure, Obs^V , interprets the empirical predicates from V. If this procedure is applied to a set of objects $A = \{a_1,...,a_m\}$ then a formal protocol pr^V of observations is produced. This protocol includes symbols for objects $a_1,...,a_m$, symbols of predicates (from V), and possibly some other symbols. It is assumed that measurement procedure Obs^V can be applied to any set of objects A. It can be done by introducing a third truth value (not defined) for the predicates from V. Next, for simplicity of consideration, it is assumed that Obs^V produces only one protocol of observations for a given A. Hence, the procedure Obs^V defines a mapping from the set of objects A to protocols: $Obs^V(A) = pr^V$.

The set of all formulas in the set V, which is true for all protocols of observation $pr^V = Obs^{\ V}(A)$ is called empirical dependency.

We say that an empirical axiomatic theory has an empirical interpretation, if all parts of that theory are interpretable in the domain theory (background knowledge): measurement procedure Obs^V , protocol of observations pr^V , predicates from V and W, and axioms S.

The concept of empirical system can be defined in terms of empirical axiomatic system as a non-reducible model [Pfanzagl, 1971] of the set of axioms \mathbf{S}^{W} . This means that the model does not merge objects, which are different for predicates from \mathbf{W} .